SKILLS CHECK

SKILLS CHECK

SKILLS CHECK

QUESTION 1
 A body falls from rest from the top of a tower. During the last second of it motion it falls $\frac{5}{16}$ of the total distance travelled. Find the height of the tower
 A block of mass 10 kg is at rest on a rough plane inclined at an angle θ to the horizontal. The coefficient of friction between the block and the plane is $1 / 4$. Given that the block is on the point of slipping find θ
 A block of mass 5 kg rests on a horizontal table. It is connected by a light inextensible string passing over a smooth pulley at the edge of the table to a 6 kg body hanging freely. If the friction force acting on the block is 10 N , calculate the acceleration of the block.

A uniform rod $A B$ of length 10 m and weight 40 N hangs in equilibrium in a horizontal position supported by vertical strings at A and B. A mass of weight 20 N rests on the rod at X such at the tension in the string at A is 20% higher than the tension at B. How far is X from B ?

A particle moves so that its position vector at time t (seconds) is given by $r=\left(2 t^{2}-3 t\right) i+\left(t^{3}-2 t\right)$. Calculate the magnitude of the acceleration when $t=4$

SKILLS CHECK

SKILLS CHECK

A stone of mass 0.2 kg is released from rest on the surface of the water in a well. It takes 3 seconds to reach the bottom of the well. Given that the water exerts a constant resistance of 1.5 N , find the depth of the well.
A particle has velocity $v=(3-2 t) i+(2 t-1) \mathrm{j} \mathrm{ms}^{-1}$ where i and j are unit vectors pointing East and North respectively. When $t=0$ the particle has position vector $4 i$ from the fixed origin 0 . Calculate the distance of the particle from the origin when the particle is travelling due south.
Two forces $A(3 i+2 j) N$ and $B(4 i-3 j) N$ act on a mass of 400 g . Calculate the magnitude of the acceleration of the particle

SKILLS CHECK

SKILLS CHECK

Two children sit on a seesaw formed from a uniform rod of length 3.5 m balanced in the middle. One child of mass 35 kg sits on one end of the seesaw. The other child has a mass of 42 kg . How far from the other child should the heavier child sit to ensure that the seesaw is balanced?
A block of mass m lies on a flat rough surface. One end of the surface is lifted to create an inclined plane. When the angle reaches 40° the block begins to move. Calculate the coefficient of friction between the block and the rough surface.
A stone is thrown upwards from a height of 1.7 m with speed $1.5 \mathrm{~ms}^{-1}$ at an angle of 40° to the horizontal. The stone moves freely under gravity before hitting the ground. Calculate the speed of the ball when it hits the ground.
A block of mass 5 kg rests on a smooth plane inclined at 30° to the horizontal. It is connected by a light inextensible string passing over a smooth pulley at the top of the slope to a mass of 3 kg . Find the acceleration of the system.
A particle of mass 8 kg is acted on by the three forces $F_{1}=(2 i+6 j-k) N$, $F_{2}=(i-2 j+4 k) N$ and $F_{3}=(i-j+2 k) N$. If the particle starts from rest at position O and is at position A after 4 seconds, calculate the distance OA.

