FOCUS 7 TASKS - Set 1

Each of the 30 topics is covered once within the 5 sheets

Sheet 1 A

Inverse proportion	Q 1
nth term of a quadratic sequence	Q 2
Lines and midpoints	Q 3
Factorising quadratics	Q 4
Histograms	Q 5
Probability	Q 6

Sheet 1 C

Rationalising the denominator	Q 1
Indices	Q 2
Using the quadratic formula	Q3
Proof	Q4
Surface Area	Q5
Sine Rule	Q6

Sheet 1B

Direct proportion	Q 1
Rearranging formulae	Q 2
Completing the square	Q 3
Calculations involving exact trig values	Q 4
Area and perimeter of a sector	Q 5
Area of a triangle (using sine)	Q 6

Sheet 1D

Ratios	Q1
Simultaneous equations	Q2
Composite functions	Q3
Similarity 2D and 3D	Q4
Vectors	Q5
Stratified sampling	Q6

Sheet $1 E$

Upper and lower bounds	Q 1
Expanding 3 brackets	Q 2
Rational expressions	Q 3
Translating graphs	Q 4
Volume	Q 5
Cosine Rule	Q 6

SKILLS CHECK

Write down the equation of the circle with radius 4 and centre $(0,0)$	Work out $1 \frac{1}{2}+\frac{4}{5}$	Solve $4 x-3=2 x+1$	Expand and simplify $\sqrt{3}(4+2 \sqrt{3})$
State the gradient and the y intercept of the line $2 y+x=8$	Pressure $=0.4 \mathrm{~N} / \mathrm{m}^{2}$ Area $=0.1 \mathrm{~m}^{2}$ Force $=?$	Increase $£ 452$ by 2.5%	Estimate

QUESTION 1	QUESTION 2	QUESTION 3
y is inversely proportional to the square root of x When $x=64 y=4$ Find the value of x when $y=8$	Find the nth term of $3,11,25,45,71$	Calculate the distance between the points $(-2,5)$ and $(5,9)$ correct to 1 decimal place Work out the coordinates of the midpoint
QUESTION 4	QUESTION 5	QUESTION 6
Factorise $6 x^{2}-5 x-6$	Estimate the number of customers who queued for between 1 and 5 minutes.	A bag contains 4 red and 5 blue counters. 2 counters are picked at random (without replacement). Calculate the probability that the counters are different colours.

SKILLS CHECK

Write down the equation of the circle with radius 9 and centre $(0,0)$	Work out $2 \frac{2}{3} \times 1 \frac{1}{2}$	Solve $\frac{x+3}{4}=\frac{x+4}{3}$	Expand and simplify $2 \sqrt{2}(2+3 \sqrt{2})$
State the gradient and the y intercept of the line $2 y-4 x=2$	Average speed $=54 \mathrm{~km} / \mathrm{h}$ Time $=50$ minutes Distance $=$?	Decease $£ 48$ by 15\%	Estimate $\frac{3.72 \times 9.52}{0.52^{2}}$

QUESTION 1	QUESTION 2	QUESTION 3
s is directly proportional to the cubet. When $t=3, s=108$ Find the value of s when $t=5$	Make x the subject of the formula $x+b=a x+c$	Express $x^{2}-6 x+2$ in completed square form and write down the coordinates of the vertex of the graph $y=x^{2}-6 x+2$
QUESTION 4	QUESTION 5	QUESTION 6
Without using a calculator work out the value of x	Calculate the perimeter of the sector. Leave your answer in terms of π	Calculate the area of the triangle (correct to 1 decimal place)

SKILLS CHECK

Write down the equation of the circle with radius 1 and centre $(0,0)$	Work out $\frac{1}{2} \div 1 \frac{1}{5}$	Solve $2(5-x)=1-x$	Expand and simplify $3 \sqrt{3}(1-3 \sqrt{3})$
State the gradient and the y intercept of the line $2 x-y=3$	Mass $=10 \mathrm{~g}$ Density $=25 \mathrm{~g} / \mathrm{cm}^{3}$ Volume $=?$	Express 31 out of 40 as a percentage	Estimate $\sqrt[3]{9.54^{2}+4.51 \times 5.21}$

QUESTION 1	QUESTION 2	QUESTION 3
Rationalise the denominator $\frac{2 \sqrt{3}+6}{\sqrt{3}}$	Evaluate $16^{-\frac{1}{2}} \times 8^{\frac{5}{3}}$	Solve $4 x^{2}-5 x-2=0$ using the quadratic formula (answer correct to 2 d.p.)
QUESTION 4	QUESTION 5	QUESTION 6
Show that $(n+5)^{2}-(n-5)^{2}$ Is an even number for all positive values of n.	Calculate the surface area of the cone correct to 1 d.p.	Calculate \times correct to 1 d.p.

SKILLS CHECK

Write down the equation of the circle with radius 9 and centre $(0,0)$	Work out $2 \frac{1}{8}-1 \frac{4}{5}$	Solve	Expand and simplify $\sqrt{3}+\sqrt{27}-2 \sqrt{3}$			
State the gradient and the y intercept of the line $2 x+6 y=15$	Distance $=30 \mathrm{~km}$ Time $=36$ minutes Speed $=? ~ k m ~ p e r ~ h o u r ~$			$~$	Calculate 120% of $£ 54$	Estimate $4.8^{2}+9.09 \times \sqrt{3} .5$
:---	:---					

QUESTION 1	QUESTION 2	QUESTION 3
The ratio of red to green beads in a bag is $2: 5$. The ratio of green to blue beads in the same bag is $3: 5$. If there are 75 blue beads in the bag, how many red beads are there?	Solve simultaneously $y=3 x-1$ $y=x^{2}+1$	Given that $f(x)=2 x-1$ and $g(x)=x^{2}$ solve $g f(x)=1$

SKILLS CHECK

Write down the equation of the circle with radius15 and centre $(0,0)$	Work out $1 \frac{1}{10} \div 1 \frac{3}{10}$	Solve $\frac{x}{2}-4=x-5$	Expand and simplify $\sqrt{2}(\sqrt{8}+4 \sqrt{2})$
State the gradient and the y intercept of the line $\frac{y}{2}+x=1$	$\begin{aligned} & \text { Force }=20 \\ & \text { Area }=0.25 \mathrm{~m}^{2} \\ & \text { Pressure }=\text { ? } \end{aligned}$	Express 48 out of 800 as a percentage	Estimate $\frac{124-9.54}{0.29^{2}}$

QUESTION 1	QUESTION 2	QUESTION 3
A rectangular field has a length of 140 m , to the nearest 5 metres and a width of 120 m , to the nearest metre. Work out the lower bound for the perimeter of the field	Expand and simplify $(x+3)(x-2)(x-1)$	Simplify $\frac{\left(x^{2}-1\right)(x-3)}{\left(x^{2}-4 x+3\right)(x+1)}$
QUESTION 4	QUESTION 5	QUESTION 6
The graph of $y=f(x)$ is shown with maximum point $(-3,2)$ Write down the coordinates of the maximum point of the curve with equation $y=f(x-2)$	A sphere of radius r has the same volume as a cylinder with the same radius. Find an expression for the height of the cylinder.	Calculate the size of angle x (correct to 1 d.p.)

