$$4x^{-\frac{1}{2}} + 12 + 9x^{\frac{1}{2}}$$

$$(64x^2)^{-\frac{1}{3}} \div 4x^{-\frac{2}{3}}$$

А

$$k-7k^2$$

$$\frac{\left(2-3\sqrt{x}\right)^2}{\sqrt{x}}$$

В

$$x^3 - 8x^2 + 21x - 27$$

The graph
$$y = x^3 - 2x^2 + x - 6$$
 is translated by vector $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Find the equation of the resulting curve y_1

C

$$4x^{-\frac{1}{2}} - 12 + 9x^{\frac{1}{2}}$$

Solve simultaneously

$$x^{2} + y^{2} - x + 2y = 0$$
$$x + y = -1$$

D

$$x^3 + 4x^2 + 5x - 1$$

Find the minimum value of the function

$$f(x) = 2x^2 - 8kx + k^2 + k$$

www.mathsbox.org.uk

E

$$x < -\frac{2}{3} \quad or \quad x > \frac{1}{4}$$

$$\frac{\left(3-2\sqrt{x}\right)^2}{\sqrt{x}}$$

F

$$9x^{-\frac{1}{2}} - 12 + 4x^{\frac{1}{2}}$$

The graph
$$y = x^3 - 2x^2 + x - 6$$
 is translated by vector $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$. Find the equation of the resulting curve y_1

G

$$x = -4$$
 $y = -18$ $x = 5$ $y = 18$

Find the range of values of k such that

$$(3k-5)x^2 + 12x + k + 6 = 0$$

has 2 distinct real roots

H

$$x = 3$$
 $y = -1$ $x = -1$ $y = 3$

Solve

$$12x^2 + 5x > 2$$

www.mathsbox.org.uk

$$x < -\frac{1}{4} \quad or \quad x > \frac{3}{4}$$

$$(64x^2)^{-\frac{2}{3}} \times \frac{1}{4}x^{-\frac{1}{3}}$$

$$x = 1$$
 $y = -2$ $x = -\frac{1}{2}$ $y = -\frac{1}{2}$

Solve

$$16x^2 - 8x - 3 > 0$$

K

$$-10 < x < 5$$

Solve simultaneously

$$x^2 + y^2 - xy = 13$$
$$x + y = 2$$

$$x < -\frac{5}{2} \quad or \quad x > -\frac{9}{4}$$

The graph
$$y = x^3 - 2x^2 + x - 6$$
 is translated by vector $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$. Find the equation of the resulting curve

M

1

Find the range of values of k such that

$$kx^2 + kx + x + k = 0$$

has 2 distinct real roots

N

$$-7\frac{1}{3} < x < 3$$

Find the minimum value of the function

$$f(x) = 2x^2 - 8kx + k$$

$$\frac{1}{16}$$

Solve simultaneously

$$y = x^2 + 3x - 22$$
$$y = 4x - 2$$

P

$$-\frac{1}{3} < x < 1$$

Solve

$$8x^2 + 38x + 45 > 0$$

Q

$$x^3 - 8x^2 + 21x - 21$$

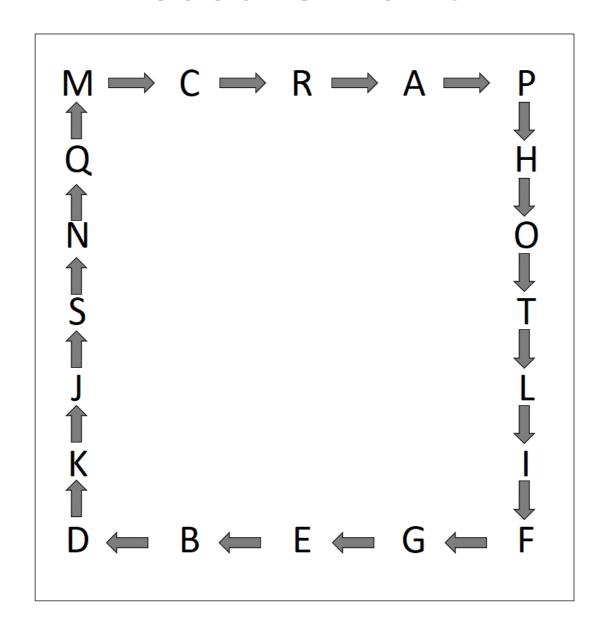
$$\frac{\left(2+3\sqrt{x}\right)^2}{\sqrt{x}}$$

R

$$\frac{1}{64}x^{-\frac{5}{3}}$$

$$(64x^{-2})^{-\frac{1}{3}} \times 4x^{-\frac{2}{3}}$$

S


$k-8k^2$

Find the range of values of k such that

$$(k+7)x^2 + 12x + k - 2 = 0$$

has 2 distinct real roots

AS LEVEL Treasure Hunt

